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Lightweight Neural Network Architectures Problem statement
Problem statement

Larger model produces better results, but runs slower.
Smaller model produces worse results, but runs faster.
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Lightweight Neural Network Architectures DL Optimization Pipeline

DL Optimization Pipeline

Model Selection — lecture objective
m MobileNet, FBNet, MobileViT, etc
Model Optimization

m With changing model architecture: pruning, low-rank factorization,
knowledge distillation, singular value decomposition, weight clustering

m Without changing model architecture: quantization

m Combination of the methods above

Non-Model Optimization

m Software accelerators using mobile device hardware: DeepX, CNNdroid,
RSTensorFlow, DeepMon, CADNN

m Mobile hardware designs for DL: TrueNorth, VPU, EIE, DianNao,
FPGA15
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Lightweight Neural Network Architectures DL Families Overview
DL Families Overview

MobileNet v1 (2017)

MobileNet v2 (2018) MobileNet Family

MobileNet v3 (2019)

EfficientNet v1 (2019)

EfficientNet v2 (2021) Model Scaling Formula Family
TinyNet (2020)
NASNet (2017)
PNASNet (2017)
ChamNet (2018)
MNASNet (2019)
FBNet (2019)
AmoebaNet (2019)

Neural Architecture Search Family
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Lightweight Neural Network Architectures DL Families Overview
DL Families Overview

m ShuffleNet v1 (2017)
CondenseNet (2017)
ShuffleNet v2 (2018)
MixNet (2019) Group Convolution Family
GhostNet (2020)
DiCENet (2020)
MicroNet (2021)
SqueezeNet (2016)
SENet (2017) Squeeze & Excitation Family
SqueezeNeXt (2018)
MobileViT (2022)
EdgeViTs (2022)

Mobile Transformer Family
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Lightweight Neural Network Architectures MobileNet Family

MobileNet Family
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MobileNet Family

m MobileNet v1 (2017)
m MobileNet v2 (2018) MobileNet Family
= MobileNet v3 (2019)
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MobileNet v1 (2017)

= MobileNet v1 (2017) (£ - 10x faster and smaller than VGG16 (2014)

m X Convolution Depth-wise Separable Convolution
s X ReLU [ ReLU6
m Width and resolution hyper-parameters

Depthwise Convolution
R

-

Pointwise Convolution

xiconv NN
- W ‘ mm\qﬂ
N ‘ \J

Figure: Depth-wise Separable Convolution (x9 faster than Conv3x3) &
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Lightweight Neural Network Architectures MobileNet Family MobileNet v1 (2017)

MobileNet v1 (2017) — ReLU6

ReLU(z) = maz(0, 2)

Output
Output

1100 -75 -50 -25 00 25 50 75 100
Weighted sum of inputs

Weighted sum of inputs

Figure: ReLUZ Figure: ReLU6 (&'

The authors of the MobileNet paper found that ReLU6 is more robust
than regular ReLU when using low-precision computation.
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Lightweight Neural Network Architectures MobileNet Family

MobileNet v1 (2017)

MobileNet v1 (2017) — Width and resolution

hyper-parameters

and width multiplier «, the number of input channels M be-
comes aM and the number of output channels /N becomes
alN.

The computational cost of a depthwise separable convo-
lution with width multiplier « is:

Dy Dy @M -Dp - Dp +1@M N - Dp - D (6)

where o € (0, 1] with typical settings of 1, 0.75, 0.5 and
0.25. o = 1 is the baseline MobileNet and o < 1 are
reduced MobileNets. Width multiplier has the effect of re-
Figure: Width multiplier &

Thinner models (reduce channels)

Andrii Polukhin  Data Science UA  October 11, 2

We can now express the computational cost for the core
layers of our network as depthwise separable convolutions
with width multiplier o and resolution multiplier p:

Dk - Dk -aM -pDp pDr +aM -aN -pDr spDr (7)

where p € (0, 1] which is typically set implicitly so that
the input resolution of the network is 224, 192, 160 or 128.
p = 1 is the baseline MobileNet and p < 1 are reduced
computation MobileNets. Resolution multiplier has the ef-
fect of reducing computational cost by p?.

Figure: Resolution multiplier ('
reduce width and height



https://arxiv.org/abs/1704.04861
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MobileNet v2 (2018)

= MobileNet v2 (2018) (£ - 0.3x faster and smaller, +1% accurate than
MobileNet v1 (2017)
m X Non-linear bottleneck £4 Linear bottleneck
m Inverted residual block
m Expansion - Projection way

56x56 - 56x56 56x%56 56x56 "
24 expansion x144 depthwise x144 projection %24
convolution convolution convolution
(factor = 8)

rasidual connaction

Figure: Residual connection as building block (&'
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https://arxiv.org/abs/1801.04381
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Lightweight Neural Network Architectures MobileNet Family MobileNet v2 (2018)

MobileNet v2 (2018) — Linear Bottlenecks & Inverted
residual block

1u6. Dwise

'u 'u
+

Figure: Residual connection' Figure: Inverted residual connection (&'

m The diagonally hatched texture — linear layers.
m The last layer is the beginning of the next block.
m Thickness of each block indicates its relative number of channels.
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Lightweight Neural Network Architectures MobileNet Family MobileNet v2 (2018)

MobileNet v2 (2018) — Expansion - Projection way

imput Expansion UNCOMpress Depthwise filer th dats Projection compress
tensor Iayer the data |ayer |3}'E‘r tha data

T

Figure: MobileNet v2 block (2"

The expansion layer acts as an decompressor (like unzip) that first restores
the data to its full form, then the depthwise layer performs whatever
filtering is important at this stage of the network, and finally the
projection layer compresses the data to make it small again.
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MobileNet v3 (2019)

= MobileNet v3 (2019) ' - 2x faster, 30% smaller, -3% accurate than
MobileNet v2 (2018)

m X ReLU6 2 HardSwish

m Squeeze-and-Excitation module
m MnasNet & NetAdapt

m Redesigning Expensive Layers
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https://arxiv.org/abs/1905.02244

MobileNet v3 (2019) — HardSwish (H-Swish)

. . 1 . . .
m sigmoid(x) = = m swish(x) = x sigmoid(x)
. . RelLU6 3 . ReLU6(x+3)
m h-sigmoid(x) = % m h-swish(x) = x=—¢
sigmoid vs h-sigmoid s swish vs h-swish
1.0F ’
7, R .

0.8} sl smsh

06l Zi — h-swish

04 --- sigmoid ;:

02 — h-sigmoid || 1t

0.0 : ; i . = i 0

-6 -4 -2 0 2 4 6 -8 -6 -4 -2 0 2 4 6 8

Figure: H-Sigmoid and H-Swish (£
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Lightweight Neural Network Architectures MobileNet Family MobileNet v3 (2019)

MobileNet v3 (2019) — Squeeze-and-Excitation module

Fo (W)

X u F,, (-) ~ (I X
— 1x1xC Ix1=<C
////// H

H' F, H Focare (1)

—_—

'
w w w

Figure: Squeeze-and-excitation Block (%"

= For any given transformation F mapping the input X to the feature maps U where
U e RHWC, e.g. a convolution, we can construct a corresponding SE block to perform
feature recalibration.

m The features U are first passed through a squeeze operation, which produces a channel
descriptor by aggregating feature maps across their spatial dimensions HW. The function
of this descriptor is to produce an embedding of the global distribution of channel-wise
feature responses, allowing information from the global receptive field of the network to
be used by all its layers.

m The aggregation is followed by an excitation operation, which takes the form of a simple
self-gating mechanism that takes the embedding as input and produces a collection of
per-channel modulation weights.

m These weights are applied to the feature maps U to generate the output of the SE block
which can be fed directly into subsequent layers of the network.
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Lightweight Neural Network Architectures MobileNet Family MobileNet v3 (2019)

MobileNet v3 (2019) — Squeeze-and-Excitation module

Mobilenet V3 block

Figure: MobileNet v2 (&' Figure: MobileNet v3(Z'

m Compared with MobileNetV2, MobileNetV3 has inserted the Squeeze
and Excitation (SE) module, which is originated in SENet (.

m H-Sigmoid is used to replace sigmoid in SE module for efficient
computation.
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Lightweight Neural Network Architectures MobileNet Family MobileNet Summary
MobileNet Summary

= MobileNet v1 (2017)Z' - 10x faster and smaller than VGG16 (2014)

m X Convolution Depth-wise Separable Convolution
m X RelLU [ RelLU6
m Width and resolution hyper-parameters

= MobileNet v2 (2018)(Z' — 0.3x faster and smaller, +1% accurate than
MobileNet v1 (2017)
m X No residual connection Inverted residual block
m X Non-linear bottleneck £4 Linear bottleneck
m Expansion - Projection way
= MobileNet v3 (2019) ' - 2x faster, 30% smaller, -3% accurate than
MobileNet v2 (2018)
m X HardSwish I ReLU6
m Squeeze-and-Excitation module
m NetAdapt architecture optimization
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Lightweight Neural Network Architectures Model Scaling Formula Family

Model Scaling Formula Family
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Lightweight Neural Network Architectures Model Scaling Formula Family Background

Background — Width, Depth, Resolution
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Figure: Width, Depth, Resolution
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Model Scaling Formula Family

m EfficientNet v1 (2019)
m EfficientNet v2 (2021) Model Scaling Formula Family
= TinyNet (2020)
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Lightweight Neural Network Architectures Model Scaling Formula Family = EfficientNet v1 (2019)

EfficientNet v1 (2019)

m EfficientNet v1 (2019) (' — 6x faster than ResNet and GPipe
m X Guess hyper-parameters 4 Model scaling formula

depth:
width:
resolution:

S.t.

d=a?

w = 3%

o0
L

r= (3)
a-[%2- 422

LA>14>1

(87

v

Figure: EfficientNet Formula (%'
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Lightweight Neural Network Architectures Model Scaling Formula Family = EfficientNet v2 (2021)

EfficientNet v2 (2021)

m EfficientNet v2 (2021) 4" — 2x faster than EfficientNet v1
m X Static training parameters [4 Progressive training
m X Depthwise layers in early layers 4 Depthwise layers in later stages
= X MBConv Fused-MBConv
m Training-Aware NAS and Scaling

depthwise
conv3x3

Convax3

HW.C

MBConv Fused-MBConv

Figure: Structure of MBConv and Fused-MBConv(#

Andrii Polukhin  Data Science UA  October 11, 2022


https://arxiv.org/abs/2104.00298
https://arxiv.org/abs/2104.00298

Lightweight Neural Network Architectures Model Scaling Formula Family TinyNet (2020)

TinyNet (2020)

m TinyNet (2020) (£ — +2% accurate than EfficientNet v1 (2019)
m Improved Model scaling formula in EfficientNet v1 for constraint
0 < ¢ < 1, using nonparametric Guassign process regression
= w=,/7%5,0<c<1,wiswidth, ris resolution, d is depth

Model | FLOPs Acc. || Model FLOPs | Acc.
EfficientNet-B~* 200M 75.8% EfficientNet-B ~2 97M 72.1%
shrink BO by » = 0.70 196M 74.9% shrink BO by » = 0.46 103M 70.3%
shrink BO by d = 0.45 196M 76.5% depth underflow’ - -
shrink BO by w = 0.65 205M 77.2% shrink B0 by w = .38 99M 73.2%
TinyNet-B (ours) 201M 77.6% TinyNet-C (ours) 97T™M 74.1%

Figure: Comparison to EfficientNet Rule(3'
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Lightweight Neural Network Architectures Model Scaling Formula Family Model Scaling Formula Summary
Model Scaling Formula Summary

m EfficientNet v1 (2019) (' — 6x faster than ResNet and GPipe
m X Guess hyper-parameters 4 Model scaling formula
m EfficientNet v2 (2021) (£ — 2x faster than EfficientNet v1

m X Static training parameters Progressive training

m X Depthwise layers in early layers 4 Depthwise layers in later stages
m X MBConv 4 Fused-MBConv

m Training-Aware NAS and Scaling

m TinyNet (2020) (£ - +2% accurate than EfficientNet v1 (2019)
m Improved Model scaling formula in EfficientNet v1 for constraint

0 < ¢ < 1, using nonparametric Guassign process regression
" w= w/ﬁ,O < ¢ < 1., wis width, r is resolution, d is depth
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Lightweight Neural Network Architectures Neural Architecture Search Family

Neural Architecture Search Family

Andrii Polukhin  Data Science UA  October 11, 2022



Background — Neural Architecture Search

We can categorize methods for NAS according to three dimensions:

m Search Space. The search space defines which architectures can be
represented in principle.

m Search Strategy. The search strategy details how to explore the
search space.

m Performance Estimation Strategy. The objective of NAS is
typically to find architectures that achieve high predictive
performance on unseen data.

architecture
Ac A

Search Space L—— | Performance
Search Strategy Estimation
A N~ Strategy
performance

estimate of A

Figure: NAS Overview ('
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Lightweight Neural Network Architectures Neural Architecture Search Family ~Background

Neural Architecture Search Family

NASNet (2017)
PNASNet (2017)
ChamNet (2018)
MNASNet (2019)
FBNet (2019)
AmoebaNet (2019)

Neural Architecture Search Family
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NASNet (2017)

m NASNet (2017) L - 3x faster, +4% accurate than Inception (2015)

m NASNet Cell-based Search Space
m ScheduledDropPath regularization technique

Figure: NASNet Search Space(#'

Andrii Polukhin  Data Science UA  October 11, 2022 31 /66


http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1707.07012

Lightweight Neural Network Architectures Neural Architecture Search Family = NASNet (2017)

NASNet (2017) — ScheduledDropPath

Normal Cell Reduction Cell

Figure: ScheduledDropPath. During training, stochastically drop out each path
(i. e. edge with a yellow box) with a probability that is linearly increased over the

course of training. ('
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PNASNet (2017)
m PNASNet (2017) (£ - 8x faster, 5x efficient than NASNet (2017)

m X RL and Evolution algorithm (EA) [ Sequential
model-base-optimization (LSTM, MLP)

Figure: PNASNet search procedure &'
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Lightweight Neural Network Architectures

ChamNet (2018)

Neural Architecture Search Family ChamNet (2018)

m ChamNet (2018) (%' — +8% accurate than ResNet-50 with same

[ Use scenario ] [ Base network ]

Andr

latency

m Chameleon adaptive genetic algorithm, where the gene of and NN is a

vector of hyp-s (#Filters and #Bottlenects).

Main search (CPU minutes)

Accuracy
predictor

Latency
predictor

Efficient evolutionary
search (EES)
ChamNet |/¢"

Energy
predictor

N \
GP + Bayesian E — Base %%
optimization network o ’
\ J < J
s N A
Operator =
\atepncy LUT E <—| Platform g D
\. J J
s N N
GP + Bayesian E P Energy )
optimization benchmark
J D)

Predictive models (one-time cost)

Figure: Chameleon adaptation framework (&'

ii Polukhin
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Lightweight Neural Network Architectures Neural Architecture Search Family = MNASNet (2019)

MNASNet (2019)

= MNASNet (2019) ' - 2x faster than MobileNet v2 (2018) and

NASNet (2017)

s X Minimize FLOPS to reduce latency 4 Minimize latency directly
m RNN Optimization

Controller

Sample models

1

from search space™

reward

Trainer

Mobile
phones

Multi-objective

reward

Figure: An Overview of Platform-Aware Neural Architecture Search for Mobile (%"
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FBNet (2019)

Lightweight Neural Network Architectures Neural Architecture Search Family

FBNet (2019)

m FBNet (2019) (£ - 420x faster search than MNASNet (2019)
m Differentiable neural architecture search (DNAS) framework that uses
gradient-based methods to optimize ConvNet architectures

(Search space ) Target Neural Architectures |
device
. o0 0 lo—_o
Deploy Benchmark | 2EE1IEE e _@ olelel o0l ***
> g Latency y

LuT :
Training Sampling
Stochastic super net super net

A A A | [
Proxy
vy L v

dataset

L 7
L e B -t o

Figure: FBNet for ConvNet design (£
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ghtwe

Neural Network Architectures Neural Architecture Search Family AmoebaNet (2019)

AmoebaNet (2019)

= AmoebaNet (2019)(Z' - a few times faster search than RL
m X RL [ Aging evolution (at the earlier stages of the search)

Algorithm 1 Aging Evolution

‘population + empty queue > The population.
history « @ & Will contain all models.
le [population| < Pdo > Initialize population.
model.arch < RANDOMARCHITECTURE()
model.accuracy ¢ TRAINANDEVAL(model.arch)
add model to right of population

add model to history
d

e
while |history| < C do > Evolve for C cycles.
sample — & > Parent candidates.
while [sample| < S do
candidate + random element from population
> The element stays in the population.
wdidate to sample

parent <+ highest-accuracy model in sample
child.arch « MUTATE(parent.arch)
child.accuracy < TRAINANDEVAL(child.arch)
add child to right of population
add child to history
remove dead from left of population > Oldest,
discard dead

end w

return hi

ceuracy model in history

Figure: Aging Evolution (&'
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Lightweight Neural Network Architectures Neural Architecture Search Family Neural Architecture Search Summary

Neural Architecture Search Summary

m NASNet (2017) (3" - 3x faster, +4% accurate than Inception (2015)
m NASNet Cell-based Search Space
m ScheduledDropPath regularization technique
m PNASNet (2017) (' - 8x faster, 5x efficient than NASNet (2017)
m X RL and Evolution algorithm (EA) [ Sequential
model-base-optimization
m ChamNet (2018)4' - +8% accurate than ResNet-50 with same
latency
m Chaneleon EES
m MNASNet (2019) (£ — 2x faster than MobileNet v2 (2018) and
NASNet (2017)
m X Minimize FLOPS to reduce latency 4 Minimize latency directly
m RNN Optimization
m FBNet (2019) (£ — 420x faster search than MNASNet (2019)
m Differentiable neural architecture search (DNAS) framework that uses
gradient-based methods to optimize ConvNet architectures
= AmoebaNet (2019)(Z' - a few times faster search than RL
m X RL [ Aging evolution (at the earlier stages of the search)
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Lightweight Neural Network Architectures Group Convolution Family

Group Convolution Family
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Lightweight Neural Network Architectures Group Convolution Family Background

Background — Group Convolution

Input Output Input Qutput
Features Features Features Features

e

Figure: Convolution and Group Convolution (3"
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Lightweight Neural Network Architectures Group Convolution Family Background

Group Convolution Family

m ShuffleNet v1 (2017)
CondenseNet (2017)
ShuffleNet v2 (2018)
MixNet (2019) Group Convolution Family
GhostNet (2020)
DiCENet (2020)
MicroNet (2021)

Andrii Polukhin Data Science UA  October 11, 2022 41/ 66



Lightweight Neural Network Architectures Group Convolution Family = CondenseNet (2017)

CondenseNet (2017)

m CondenseNet (2017)(Z' — 2x smaller than ShuffleNet (2017)
m Weights pruning in the early stages of training
m X Convolution Group Convolution
m X Pre-define groups of convolutions 4 Learn input feature grouping
automatically during training

Input Output Input Output
Features Features Features Features
” T i
T L7

1 1

5 A L
i~ ; i
o | )
=5 Ao .
L6 Aogio :
72 | |
s WL 7
E i 1

e =
5\

0 _~ . |
{) 1

o e W
\ 1]

Figure: Convolution and Group Convolution &'
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Group Convolution Family | CondenseNet (2017)

Lightweight Neural Network Architectures

CondenseNet (2017) — Learned Group Convolution

Selected and 05 010
Rearranged Features — Training Loss
—— Learing Rate
04 008
006§
£
00a§
01 ocndoning Condsrsing Gondensi ooz
Suge1 | Sage? | Swgod
o s 0 150 200 250 300
Epoch

|
Optimization Stage | Testing !
Figure 4. The cosine shape learning rate and a typical training loss
curve with a condensation factor of C'= 4

3. During training a fraction of
the same set of features,

dard group convolutions. . L.
Figure: Training
Process ('

I Gondensing stage 1 Condensing Stage 2
Figure 3. Illustration of learned group convolutions with G =3 groups and a condensation factor of C'

(C'=1)/C connections are removed after each of the C — 1 condensing s
and during test-time the index layer rearranges the features to allow the resulting model to be implem

Figure: Group Convolution Learning Process
At the end of each C1 condensing stages we prune % of
the filter weights. By the end of traing, only % of the

weights remain in each filter group. (&

Data Science UA  October 11,
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Lightweight Neural Network Architectures  Group Convolution Family = ShuffleNet v1 (2017)

ShuffleNet v1 (2017)

m ShuffleNet v1 (2017) (2" — 13x faster than AlexNet (2012), +7%
accurate than MobileNet v1 (2017)
m X Convolution 4 Group Convolution with feature shuffling

input | \ [ | [ \
GConv1
Feature ‘ ‘ ] ‘ ‘ l ‘
Lot L (ETETTEI) 5
Output ‘ ‘ ‘

(a) (b) (c)

Figure 1. Channel shuffle with two stacked group convolutions. GConv stands for group convolution. a) two stacked convolution layers
with the same number of groups. Each output channel only relates to the input channels within the group. No cross talk; b) input and
output channels are fully related when GConv?2 takes data from different groups after GConvl; c) an equivalent implementation to b) using
channel shuffle.

Figure: Channel shuffle @'
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ures

Group Convolution Family = ShuffleNet v1 (2017)

ShuffleNet v1 (2017) — ShuffleNet Unit

1x1 Conv

BN RelLU

3x3 DWConv

BN RelLU

BN

Add

ReLU

(@)

1x1 GConv
BN RelLU

Channel Shuffle

B 2

3x3 DWConv

BN BN
1x1 GCenv 1x1 GConv

BN

Add

RelU

(b)

3x3 AVG Pool

1x1 GConv

BN RelLU

Channel Shuffle

(stride =2)
3x3 DWConv
(stride = 2)

BN

()

Figure 2. ShuffleNet Units. a) bottleneck unit [Y] with depthwise convolution (DWConv) [3, 12]; b) ShuffleNet unit with pointwise group
convolution (GConv) and channel shuffle; ¢) ShuffleNet unit with stride = 2.

Figure: ShuffleNet Unit($
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Lightweight Neural Network Architectures  Group Convolution Family = ShuffleNet v2 (2018)

ShuffleNet v2 (2018)

m ShuffleNet v2 (2018)[3I — 58% faster than MobileNet v2 (2018), 63%
faster than ShuffleNet v1 (2017)
m X Channel Shuffle between 1x1 conv and 3x3 DWConv £Z Channel
Shuffle at the end of the block
m X RelU after Concat 4 ReLU before Concat
m Split features in two groups before the convolution: identity and x

Fig. 3: Building blocks of ShuffleNet v1 [I3] and this work. (a): the basic ShuffleNet
unit; (b) the ShuffleNet unit for spatial down sampling (2x); (c) our basic unit; (d)
our unit for spatial down sampling (2x). DWConv: depthwise convolution. GConv:
group convolution

Figure: Channel shuffle v2(2'
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Lightweight Neural Network Architectures Group Convolution Family = MixNet (2019)

MixNet (2019)

m MixNet (2019) (&' — +4% accurate than MobileNet v2 (2018)

m X Convolution MixConv, mixes up multiple kernel sizes in one

convolution
Input Tensor Input Tensor
kxk
channels channels
Y A Y |
Output Tensor Output Tensor
(a) Vanilla Depthwise Convolution {b) Our proposed MixConv

Figure: Mixed depthwise convolution (MixConv) ('
Unlike vanilla depthwise convolution that applies a single kernel to all channels,
MixConv partitions channels into groups and apply different kernel size to each

group.
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Lightweight Neural Network Architectures Group Convolution Family = GhostNet (2020)

GhostNet (2020)

m GhostNet (2020)Z' - +1% accurate than MobileNet v3 (2019)
m X # Feature maps equals # Kernels 4 Few times more feature maps

by applying linear operations on them

Identity
D,
Conv
Dy,

Input Output

Figure: An illustration of the convolutional layer and the proposed Ghost module
for outputting the same number of feature maps. ® represents the cheap

operation (Depthwise Convolution). &
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ightweight Neural Network Architectures = Group Convolution Family DiCENet (2020)

DiCENet (2020)

m DiCENet (2020)3' - +3% accurate than MobileNet v2 (2018) and
ShuffleNet v2 (2018)
m X Depth-wise Separable Convolution 4 DiCE Unit

DiCE Unit

D bW
Avg. Pool > FC RelU
H > FC > Sigmoid > u
X Y

Local Fusion Global Fusion

DimConv: Dimension-wise Convolution DimFuse: Dimension-wise Fusion

Fig. 3: DiCE unit efficiently encodes the spatial and channel-wise information in the input tensor X using dimension-wise convolutions
(DimConv) and dimension-wise fusion (DimFuse) to produce an output tensor Y. For simplicity, we show kernel corresponding to
each dimension independently. However, in practice, these three kernels are executed simultaneously, leading to faster run-time. See
Section[3:4 and [ for more details.

Figure: DIiCE Unit(@'

Andrii Polukhin  Data Science UA" October 11



https://arxiv.org/abs/1906.03516
https://arxiv.org/abs/1906.03516

Lightweight Neural Network Architectures Group Convolution Family MicroNet (2021)

MicroNet (2021)

m MicroNet (2021)(Z' — 2x smaller, 3x faster than MobileNet v3 (2019)

m X Convolution Micro-Factorized Grouped convolution
m X ReLU 4 Dynamic Shift-Max

Flow Chart Matrix Multiplication i i Depthwise  Pointwise
: Pokx1 1xk 1x1

-+ Elxllllxlkll= i _4:@@%
=<

@ Q" w P Q" w —

Mi i intwise Ce i  Micro-Factorized ise C on Lite C

Figure 2. Micro-Factorized pointwise and depthwise convolutions. Left: factorizing a pointwise convolution into two group-adaptive
convolutions, where the group number G = /C/R = /18/2 = 3. The resulting matrix W can be divided into G x G blocks, of which
each block has rank 1. Middle: factorizing a k x k depthwise convolution into a k x 1 and a 1 x k depthwise convolutions. Right: lite
combination of Micro-Factorized pointwise and depthwise convolutions.

Figure: Micro-Factorized pointwise and depthwise convolutions.
This low rank approximation reduces the computational complexity from O(k2C)

to O(kC)&
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Lightweight Neural Network Architectures Group Convolution Family MicroNet (2021)

MicroNet (2021) — Dynamic Shift-Max

Dynamic Shift-Max, an activation function, that fuses an input feature
map and takes maximum with its circular group shift.

Micro-Factorized Pointwise Convolution

Rank-2 'Rank-2 Rank-2
Rank-2 'Rank-2 'Rank-2

Rank=2 IRank-2 Rank-2

Group Shift

Figure: Dynamic Shift-Max&'
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Lightweight Neural Network Architectures Group Convolution Family = Group Convolution Summary
Group Convolution Summary

m ShuffleNet vl (2017) (&' - 13x faster than AlexNet (2012), +7%
accurate than MobileNet v1 (2017)

m X Convolution £2 Group Convolution with feature shuffling
m CondenseNet (2017) (" — 2x smaller than ShuffleNet (2017)

m Weights pruning in the early stages of training

m X Convolution £2 Group Convolution

m X Pre-define groups of convolutions 4 Learn input feature grouping
automatically during training

m ShuffleNet v2 (2018) (' — 58% faster than MobileNet v2 (2018), 63%
faster than ShuffleNet v1 (2017)
m X Channel Shuffle between 1x1 conv and 3x3 DWConv 4 Channel
Shuffle at the end of the block
m X RelU after Concat RelLU before Concat
m X Two-grouped 1x1 convolution £2 Split features in two groups before
the convolution
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Lightweight Neural Network Architectures Group Convolution Family = Group Convolution Summary
Group Convolution Summary

MixNet (2019)Z' - +4% accurate than MobileNet v2 (2018)

m X Convolution MixConv, mixes up multiple kernel sizes in one
convolution

GhostNet (2020)Z' - +1% accurate than MobileNet v3 (2019)
m X # Feature maps equals # Kernels 4 Few times more feature maps
by applying linear operations on them
DiCENet (2020) (£ — +3% accurate than MobileNet v2 (2018) and
ShuffleNet v2 (2018)
m X Depth-wise Separable Convolution £4 DiCE Unit
MicroNet (2021)Z' - 2x smaller, 3x faster than MobileNet v3 (2019)

m X Convolution Micro-Factorized Grouped convolution
s X ReLU 4 Dynamic Shift-Max
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Lightweight Neural Network Architectures = Squeeze & Excitation Family

Squeeze & Excitation Family
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Squeeze & Excitation Family

m SqueezeNet (2016)
m SqueezeNeXt (2018) Squeeze & Excitation Family
m SENet (2017)
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Lightweight Neural Network Architectures Squeeze & Excitation Family ~SqueezeNet (2016)

SqueezeNet (2016)

m SqueezeNet (2016)(Z' — 50x smaller than AlexNet (2012)
m X Convolution £ Fire module

1x1 convolution filters

Figure: Organl.zatlon of convolution Figure: Macroarchitectural view of our
filters in the Fire module(&' SqueezeNet
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Lightweight Neural Network Architectures Squeeze & Excitation Family SqueezeNeXt (2018)

SqueezeNeXt (2018)

m SqueezeNeXt (2018) (2" — 1.3x smaller than MobileNet v1 (2017),
2.5x faster SqueezeNet
m X No residual connection Residual connection
m X Convolution Depth-wise Separable Convolution

128, HxW

128, 11,64

256, HxW
128, HxW
128, 1x1, 16 &4, 1x1. 32

256, 1x1, 64
18, 1x1,64 | | 16, 3x3, 64 ‘ | 32,3x1,64

64, 11, 256
128, Hxw

Figure 1: Illustration of a ResNet block on the left, a SqueezeNet block in the middle, and a SqueezeNext (SqNxt) block on the
right. SqueezeNext uses a two-stage bottleneck module to reduce the number of input channels to the 3 x 3 convolution. The
latter is further decomposed into separable convolutions to further reduce the number of parameters (orange parts), followed
by a 1 x 1 expansion module.

128, Hxw P

Figure: SqueezeNeXt ('
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Lightweight Neural Network Architectures Squeeze & Excitation Family SENet (2017)
SENet (2017)

m SENet (2017)(Z' - +4% accurate than MobileNet (2017) and ResNet
(2016)

m Squeeze-and-Excitation Block

F.. (W)

X U y [T ———— T
/] Ix1xC 1x1xC \ ///

H' F, H Fycate 1)

Figure: Squeeze-and-excitation Block (%"

Andrii Polukhin  Data Science UA  October 11, 2022


https://arxiv.org/abs/1709.01507
https://arxiv.org/abs/1709.01507

Lightweight Neural Network Architectures Squeeze & Excitation Family =Squeeze & Excitation Summary

Squeeze & Excitation Summary

m SqueezeNet (2016) (4" — 50x smaller than AlexNet (2012)
= X Convolution £ Fire module

m SqueezeNeXt (2018) (' — 1.3x smaller than MobileNet v1 (2017),
2.5x faster SqueezeNet

m X No residual connection Residual connection
m X Convolution Depth-wise Separable Convolution

m SENet (2017) 3 — +4% accurate than MobileNet (2017) and ResNet
(2016)

m Squeeze-and-Excitation Block
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Lightweight Neural Network Architectures Mobile Transformer Family

Mobile Transformer Family
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Mobile Transformer Family

= MobileViT (2022)
m EdgeViTs (2022)
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Lightweight Neural Network Architectures Mobile Transformer Family = MobileViT (2022)

MobileViT (2022)

m MobileViT (2022)(Z — +3% accurate than MobileNet v3 (2019),
+6% accurate than DelT (2021)
m X Convolution, Attention £4 MobileViT Block

Sq P
Lx
- -~

—
Flatien image patches Positional encoding

(a) Standard visual transformer (ViT)
MobileVIT block .

Output spatial - 128 128 64 %64 32x32 16 % 16 8x8 1x1
dimensions

(b) MobileViT. Here, Conv-n x n in the MobileViT block represents a standard n x n convolution and
MV?2 refers to MobileNetv2 block. Blocks that perform down-sampling are marked with | 2.

Figure: MobileViT '
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Lightweight Neural Network Architectures

EdgeViTs (2022)

Mobile Transformer Family = EdgeViTs (2022)

m EdgeViTs (2022) (£ — +12% accurate than MobileViT (2022)
m Local-Global-Local (LGL) information exchange bottleneck
B Aggregate information from neighbor tokens with DWConv
m Sparse delegate tokens for long-range information exchange
B Transposed convolutions to update information in tokens

Xout b
Stage 4 3

Dowsamgle Laver] /

o ([ sews )/

W
3273

(_Feed Foward

I
1
| )
| ;
16"16 ; ]
Doissgieteved); | i
P -y | '
Hw i Lo :
FXgXC e B | :
Dowsample Layer )y, | ]
\ )
Fiaria) \ Local-Global-Local Block  #Blocks|
X
(a) b) Local-Global-Local

(c) Global Sparse Attention
Fig.2. (a) Schematic overview of our four stages EdgeViT architecture, with each
stage consisting of a stack of (b) Local-Global-Local (LGL) blocks constructed with
local aggregation module, sparse-self-attention and local propagation module, patch
embedding (PE) and Feed Forward Network (FFN). In this example, h and w refer
to input height and width of stage-2: h = % and w = %. C; refers to the number of
channels for stage-i and r denotes the sub-sampling rate.

Figure: EdgeViT (&
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Lightweight Neural Network Architectures Mobile Transformer Family = EdgeViTs (2022)

EdgeViTs (2022) — LGL

=TT

| i i |

(b) Global Sparse Attention (¢) Local Propagation

Fig. 3. Tllustration of three key operations involved in the proposed Local-Global-
Local (LGL) transformer block. In this example, we showcase how the target token
(the orange square) at the center conducts information exchange with all the others in
three sequential steps: (a) Local information from neighbor tokens within the

is first aggregated to the target token. (b) Global sparse attention is then com-
puted among the target token and other selected delegates in orange color. (¢) Global
context information encoded in the target token is last propagated to its neighbor
non-delegate tokens within the pink arca.

Figure: EdgeViT (&
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Lightweight Neural Network Architectures Mobile Transformer Family = Mobile Transformer Summary
Mobile Transformer Summary

= MobileViT (2022)Z' - +3% accurate than MobileNet v3 (2019),
+6% accurate than DelT (2021)
m X Convolution, Attention MobileViT Block
m EdgeViTs (2022) (£ — +12% accurate than MobileViT (2022)
m Local-Global-Local (LGL) information exchange bottleneck

m Aggregate information from neighbor tokens with DWConv
m Sparse delegate tokens for long-range information exchange
m Transposed convolutions to update information in tokens
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Lightweight Neural Network Architectures Mobile Transformer Family = Mobile Transformer Summary

Thank you!
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