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Lightweight Neural Network Architectures | Problem statement

Problem statement

Larger model produces better results, but runs slower.
Smaller model produces worse results, but runs faster.
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Lightweight Neural Network Architectures | DL Optimization Pipeline

DL Optimization Pipeline

1 Model Selection – lecture objective
MobileNet, FBNet, MobileViT, etc

2 Model Optimization
With changing model architecture: pruning, low-rank factorization,
knowledge distillation, singular value decomposition, weight clustering
Without changing model architecture: quantization
Combination of the methods above

3 Non-Model Optimization
Software accelerators using mobile device hardware: DeepX, CNNdroid,
RSTensorFlow, DeepMon, CADNN
Mobile hardware designs for DL: TrueNorth, VPU, EIE, DianNao,
FPGA15
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DL Families Overview

MobileNet v1 (2017)
MobileNet v2 (2018)
MobileNet v3 (2019)

MobileNet Family

EfficientNet v1 (2019)
EfficientNet v2 (2021)
TinyNet (2020)

Model Scaling Formula Family

NASNet (2017)
PNASNet (2017)
ChamNet (2018)
MNASNet (2019)
FBNet (2019)
AmoebaNet (2019)

Neural Architecture Search Family
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DL Families Overview

ShuffleNet v1 (2017)
CondenseNet (2017)
ShuffleNet v2 (2018)
MixNet (2019)
GhostNet (2020)
DiCENet (2020)
MicroNet (2021)

Group Convolution Family

SqueezeNet (2016)
SENet (2017)
SqueezeNeXt (2018)

Squeeze & Excitation Family

MobileViT (2022)
EdgeViTs (2022)

Mobile Transformer Family
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MobileNet Family
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MobileNet Family

MobileNet v1 (2017)
MobileNet v2 (2018)
MobileNet v3 (2019)

MobileNet Family
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MobileNet v1 (2017)
MobileNet v1 (2017)� – 10x faster and smaller than VGG16 (2014)

� Convolution �� Depth-wise Separable Convolution
� ReLU �� ReLU6
Width and resolution hyper-parameters

Figure: Depth-wise Separable Convolution (x9 faster than Conv3x3)�
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MobileNet v1 (2017) – ReLU6

Figure: ReLU� Figure: ReLU6�

The authors of the MobileNet paper found that ReLU6 is more robust
than regular ReLU when using low-precision computation.
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MobileNet v1 (2017) – Width and resolution
hyper-parameters

Figure: Width multiplier�
Thinner models (reduce channels)

Figure: Resolution multiplier�
reduce width and height
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MobileNet v2 (2018)

MobileNet v2 (2018)� – 0.3x faster and smaller, +1% accurate than
MobileNet v1 (2017)

� Non-linear bottleneck �� Linear bottleneck
Inverted residual block
Expansion - Projection way

Figure: Residual connection as building block�
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Lightweight Neural Network Architectures | MobileNet Family | MobileNet v2 (2018)

MobileNet v2 (2018) – Linear Bottlenecks & Inverted
residual block

Figure: Residual connection� Figure: Inverted residual connection�

The diagonally hatched texture – linear layers.
The last layer is the beginning of the next block.
Thickness of each block indicates its relative number of channels.
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Lightweight Neural Network Architectures | MobileNet Family | MobileNet v2 (2018)

MobileNet v2 (2018) – Expansion - Projection way

Figure: MobileNet v2 block�

The expansion layer acts as an decompressor (like unzip) that first restores
the data to its full form, then the depthwise layer performs whatever
filtering is important at this stage of the network, and finally the
projection layer compresses the data to make it small again.
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MobileNet v3 (2019)

MobileNet v3 (2019)� – 2x faster, 30% smaller, -3% accurate than
MobileNet v2 (2018)

� ReLU6 �� HardSwish
Squeeze-and-Excitation module
MnasNet & NetAdapt
Redesigning Expensive Layers
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MobileNet v3 (2019) – HardSwish (H-Swish)

sigmoid(x) = 1
1+e−x

h-sigmoid(x) = ReLU6(x+3)
6

swish(x) = x sigmoid(x)
h-swish(x) = x ReLU6(x+3)

6

Figure: H-Sigmoid and H-Swish�
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Lightweight Neural Network Architectures | MobileNet Family | MobileNet v3 (2019)

MobileNet v3 (2019) – Squeeze-and-Excitation module

Figure: Squeeze-and-excitation Block�

For any given transformation Ftr mapping the input X to the feature maps U where
U ∈ RHWC , e.g. a convolution, we can construct a corresponding SE block to perform
feature recalibration.
The features U are first passed through a squeeze operation, which produces a channel
descriptor by aggregating feature maps across their spatial dimensions HW . The function
of this descriptor is to produce an embedding of the global distribution of channel-wise
feature responses, allowing information from the global receptive field of the network to
be used by all its layers.
The aggregation is followed by an excitation operation, which takes the form of a simple
self-gating mechanism that takes the embedding as input and produces a collection of
per-channel modulation weights.
These weights are applied to the feature maps U to generate the output of the SE block
which can be fed directly into subsequent layers of the network.
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MobileNet v3 (2019) – Squeeze-and-Excitation module

Figure: MobileNet v2� Figure: MobileNet v3�

Compared with MobileNetV2, MobileNetV3 has inserted the Squeeze
and Excitation (SE) module, which is originated in SENet�.
H-Sigmoid is used to replace sigmoid in SE module for efficient
computation.
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MobileNet Summary

MobileNet v1 (2017)� – 10x faster and smaller than VGG16 (2014)
� Convolution �� Depth-wise Separable Convolution
� ReLU �� ReLU6
Width and resolution hyper-parameters

MobileNet v2 (2018)� – 0.3x faster and smaller, +1% accurate than
MobileNet v1 (2017)

� No residual connection �� Inverted residual block
� Non-linear bottleneck �� Linear bottleneck
Expansion - Projection way

MobileNet v3 (2019)� – 2x faster, 30% smaller, -3% accurate than
MobileNet v2 (2018)

� HardSwish �� ReLU6
Squeeze-and-Excitation module
NetAdapt architecture optimization
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Model Scaling Formula Family
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Lightweight Neural Network Architectures | Model Scaling Formula Family | Background

Background – Width, Depth, Resolution

Figure: Width, Depth, Resolution
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Lightweight Neural Network Architectures | Model Scaling Formula Family | Background

Model Scaling Formula Family

EfficientNet v1 (2019)
EfficientNet v2 (2021)
TinyNet (2020)

Model Scaling Formula Family
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Lightweight Neural Network Architectures | Model Scaling Formula Family | EfficientNet v1 (2019)

EfficientNet v1 (2019)

EfficientNet v1 (2019)� – 6x faster than ResNet and GPipe
� Guess hyper-parameters �� Model scaling formula

Figure: EfficientNet Formula�
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Lightweight Neural Network Architectures | Model Scaling Formula Family | EfficientNet v2 (2021)

EfficientNet v2 (2021)
EfficientNet v2 (2021)� – 2x faster than EfficientNet v1

� Static training parameters �� Progressive training
� Depthwise layers in early layers �� Depthwise layers in later stages
� MBConv �� Fused-MBConv
Training-Aware NAS and Scaling

Figure: Structure of MBConv and Fused-MBConv�
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Lightweight Neural Network Architectures | Model Scaling Formula Family | TinyNet (2020)

TinyNet (2020)

TinyNet (2020)� – +2% accurate than EfficientNet v1 (2019)
Improved Model scaling formula in EfficientNet v1 for constraint
0 < c < 1, using nonparametric Guassign process regression
w =

√ c
r2d , 0 < c < 1., w is width, r is resolution, d is depth

Figure: Comparison to EfficientNet Rule�
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Model Scaling Formula Summary

EfficientNet v1 (2019)� – 6x faster than ResNet and GPipe
� Guess hyper-parameters �� Model scaling formula

EfficientNet v2 (2021)� – 2x faster than EfficientNet v1
� Static training parameters �� Progressive training
� Depthwise layers in early layers �� Depthwise layers in later stages
� MBConv �� Fused-MBConv
Training-Aware NAS and Scaling

TinyNet (2020)� – +2% accurate than EfficientNet v1 (2019)
Improved Model scaling formula in EfficientNet v1 for constraint
0 < c < 1, using nonparametric Guassign process regression
w =

√ c
r2d , 0 < c < 1., w is width, r is resolution, d is depth
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Neural Architecture Search Family
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Background – Neural Architecture Search
We can categorize methods for NAS according to three dimensions:

Search Space. The search space defines which architectures can be
represented in principle.
Search Strategy. The search strategy details how to explore the
search space.
Performance Estimation Strategy. The objective of NAS is
typically to find architectures that achieve high predictive
performance on unseen data.

Figure: NAS Overview�
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Neural Architecture Search Family

NASNet (2017)
PNASNet (2017)
ChamNet (2018)
MNASNet (2019)
FBNet (2019)
AmoebaNet (2019)

Neural Architecture Search Family
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Lightweight Neural Network Architectures | Neural Architecture Search Family | NASNet (2017)

NASNet (2017)
NASNet (2017)� – 3x faster, +4% accurate than Inception (2015)

NASNet Cell-based Search Space
ScheduledDropPath regularization technique

Figure: NASNet Search Space�
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Lightweight Neural Network Architectures | Neural Architecture Search Family | NASNet (2017)

NASNet (2017) – ScheduledDropPath

Figure: ScheduledDropPath. During training, stochastically drop out each path
(i. e. edge with a yellow box) with a probability that is linearly increased over the
course of training.�
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Lightweight Neural Network Architectures | Neural Architecture Search Family | PNASNet (2017)

PNASNet (2017)
PNASNet (2017)� – 8x faster, 5x efficient than NASNet (2017)

� RL and Evolution algorithm (EA) �� Sequential
model-base-optimization (LSTM, MLP)

Figure: PNASNet search procedure�
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Lightweight Neural Network Architectures | Neural Architecture Search Family | ChamNet (2018)

ChamNet (2018)
ChamNet (2018)� – +8% accurate than ResNet-50 with same
latency

Chameleon adaptive genetic algorithm, where the gene of and NN is a
vector of hyp-s (#Filters and #Bottlenects).

Figure: Chameleon adaptation framework�
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Lightweight Neural Network Architectures | Neural Architecture Search Family | MNASNet (2019)

MNASNet (2019)
MNASNet (2019)� – 2x faster than MobileNet v2 (2018) and
NASNet (2017)

� Minimize FLOPS to reduce latency �� Minimize latency directly
RNN Optimization

Figure: An Overview of Platform-Aware Neural Architecture Search for Mobile�
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FBNet (2019)
FBNet (2019)� – 420x faster search than MNASNet (2019)

Differentiable neural architecture search (DNAS) framework that uses
gradient-based methods to optimize ConvNet architectures

Figure: FBNet for ConvNet design�
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Lightweight Neural Network Architectures | Neural Architecture Search Family | AmoebaNet (2019)

AmoebaNet (2019)

AmoebaNet (2019)� – a few times faster search than RL
� RL �� Aging evolution (at the earlier stages of the search)

Figure: Aging Evolution�
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Neural Architecture Search Summary
NASNet (2017)� – 3x faster, +4% accurate than Inception (2015)

NASNet Cell-based Search Space
ScheduledDropPath regularization technique

PNASNet (2017)� – 8x faster, 5x efficient than NASNet (2017)
� RL and Evolution algorithm (EA) �� Sequential
model-base-optimization

ChamNet (2018)� – +8% accurate than ResNet-50 with same
latency

Chaneleon EES
MNASNet (2019)� – 2x faster than MobileNet v2 (2018) and
NASNet (2017)

� Minimize FLOPS to reduce latency �� Minimize latency directly
RNN Optimization

FBNet (2019)� – 420x faster search than MNASNet (2019)
Differentiable neural architecture search (DNAS) framework that uses
gradient-based methods to optimize ConvNet architectures

AmoebaNet (2019)� – a few times faster search than RL
� RL �� Aging evolution (at the earlier stages of the search)
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Group Convolution Family
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Lightweight Neural Network Architectures | Group Convolution Family | Background

Background – Group Convolution

Figure: Convolution and Group Convolution�
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Group Convolution Family

ShuffleNet v1 (2017)
CondenseNet (2017)
ShuffleNet v2 (2018)
MixNet (2019)
GhostNet (2020)
DiCENet (2020)
MicroNet (2021)

Group Convolution Family
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Lightweight Neural Network Architectures | Group Convolution Family | CondenseNet (2017)

CondenseNet (2017)
CondenseNet (2017)� – 2x smaller than ShuffleNet (2017)

Weights pruning in the early stages of training
� Convolution �� Group Convolution
� Pre-define groups of convolutions �� Learn input feature grouping
automatically during training

Figure: Convolution and Group Convolution�

Andrii Polukhin | Data Science UA | October 11, 2022 42 / 66

https://arxiv.org/abs/1711.09224
https://arxiv.org/abs/1711.09224


Lightweight Neural Network Architectures | Group Convolution Family | CondenseNet (2017)

CondenseNet (2017) – Learned Group Convolution

Figure: Group Convolution Learning Process
At the end of each C1 condensing stages we prune 1

C of
the filter weights. By the end of traing, only 1

C of the
weights remain in each filter group.�

Figure: Training
Process�
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ShuffleNet v1 (2017)
ShuffleNet v1 (2017)� – 13x faster than AlexNet (2012), +7%
accurate than MobileNet v1 (2017)

� Convolution �� Group Convolution with feature shuffling

Figure: Channel shuffle�
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Lightweight Neural Network Architectures | Group Convolution Family | ShuffleNet v1 (2017)

ShuffleNet v1 (2017) – ShuffleNet Unit

Figure: ShuffleNet Unit�
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ShuffleNet v2 (2018)
ShuffleNet v2 (2018)� – 58% faster than MobileNet v2 (2018), 63%
faster than ShuffleNet v1 (2017)

� Channel Shuffle between 1x1 conv and 3x3 DWConv �� Channel
Shuffle at the end of the block
� ReLU after Concat �� ReLU before Concat
Split features in two groups before the convolution: identity and x

Figure: Channel shuffle v2�
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Lightweight Neural Network Architectures | Group Convolution Family | MixNet (2019)

MixNet (2019)
MixNet (2019)� – +4% accurate than MobileNet v2 (2018)

� Convolution �� MixConv, mixes up multiple kernel sizes in one
convolution

Figure: Mixed depthwise convolution (MixConv)�
Unlike vanilla depthwise convolution that applies a single kernel to all channels,
MixConv partitions channels into groups and apply different kernel size to each
group.
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Lightweight Neural Network Architectures | Group Convolution Family | GhostNet (2020)

GhostNet (2020)
GhostNet (2020)� – +1% accurate than MobileNet v3 (2019)

� # Feature maps equals # Kernels �� Few times more feature maps
by applying linear operations on them

Figure: An illustration of the convolutional layer and the proposed Ghost module
for outputting the same number of feature maps. Φ represents the cheap
operation (Depthwise Convolution).�
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DiCENet (2020)
DiCENet (2020)� – +3% accurate than MobileNet v2 (2018) and
ShuffleNet v2 (2018)

� Depth-wise Separable Convolution �� DiCE Unit

Figure: DiCE Unit�
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MicroNet (2021)
MicroNet (2021)� – 2x smaller, 3x faster than MobileNet v3 (2019)

� Convolution �� Micro-Factorized Grouped convolution
� ReLU �� Dynamic Shift-Max

Figure: Micro-Factorized pointwise and depthwise convolutions.
This low rank approximation reduces the computational complexity from O(k2C)
to O(kC)�
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Lightweight Neural Network Architectures | Group Convolution Family | MicroNet (2021)

MicroNet (2021) – Dynamic Shift-Max

Dynamic Shift-Max, an activation function, that fuses an input feature
map and takes maximum with its circular group shift.

Figure: Dynamic Shift-Max�
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Group Convolution Summary

ShuffleNet v1 (2017)� – 13x faster than AlexNet (2012), +7%
accurate than MobileNet v1 (2017)

� Convolution �� Group Convolution with feature shuffling
CondenseNet (2017)� – 2x smaller than ShuffleNet (2017)

Weights pruning in the early stages of training
� Convolution �� Group Convolution
� Pre-define groups of convolutions �� Learn input feature grouping
automatically during training

ShuffleNet v2 (2018)� – 58% faster than MobileNet v2 (2018), 63%
faster than ShuffleNet v1 (2017)

� Channel Shuffle between 1x1 conv and 3x3 DWConv �� Channel
Shuffle at the end of the block
� ReLU after Concat �� ReLU before Concat
� Two-grouped 1x1 convolution �� Split features in two groups before
the convolution
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Lightweight Neural Network Architectures | Group Convolution Family | Group Convolution Summary

Group Convolution Summary

MixNet (2019)� – +4% accurate than MobileNet v2 (2018)
� Convolution �� MixConv, mixes up multiple kernel sizes in one
convolution

GhostNet (2020)� – +1% accurate than MobileNet v3 (2019)
� # Feature maps equals # Kernels �� Few times more feature maps
by applying linear operations on them

DiCENet (2020)� – +3% accurate than MobileNet v2 (2018) and
ShuffleNet v2 (2018)

� Depth-wise Separable Convolution �� DiCE Unit
MicroNet (2021)� – 2x smaller, 3x faster than MobileNet v3 (2019)

� Convolution �� Micro-Factorized Grouped convolution
� ReLU �� Dynamic Shift-Max
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Squeeze & Excitation Family

SqueezeNet (2016)
SqueezeNeXt (2018)
SENet (2017)

Squeeze & Excitation Family
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SqueezeNet (2016)

SqueezeNet (2016)� – 50x smaller than AlexNet (2012)
� Convolution �� Fire module

Figure: Organization of convolution
filters in the Fire module�

Figure: Macroarchitectural view of our
SqueezeNet�
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SqueezeNeXt (2018)
SqueezeNeXt (2018)� – 1.3x smaller than MobileNet v1 (2017),
2.5x faster SqueezeNet

� No residual connection �� Residual connection
� Convolution �� Depth-wise Separable Convolution

Figure: SqueezeNeXt�
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SENet (2017)

SENet (2017)� – +4% accurate than MobileNet (2017) and ResNet
(2016)

Squeeze-and-Excitation Block

Figure: Squeeze-and-excitation Block�
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Squeeze & Excitation Summary

SqueezeNet (2016)� – 50x smaller than AlexNet (2012)
� Convolution �� Fire module

SqueezeNeXt (2018)� – 1.3x smaller than MobileNet v1 (2017),
2.5x faster SqueezeNet

� No residual connection �� Residual connection
� Convolution �� Depth-wise Separable Convolution

SENet (2017)� – +4% accurate than MobileNet (2017) and ResNet
(2016)

Squeeze-and-Excitation Block
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MobileViT (2022)
EdgeViTs (2022)
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MobileViT (2022)
MobileViT (2022)� – +3% accurate than MobileNet v3 (2019),
+6% accurate than DeIT (2021)

� Convolution, Attention �� MobileViT Block

Figure: MobileViT�
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EdgeViTs (2022)
EdgeViTs (2022)� – +12% accurate than MobileViT (2022)

Local-Global-Local (LGL) information exchange bottleneck
Aggregate information from neighbor tokens with DWConv
Sparse delegate tokens for long-range information exchange
Transposed convolutions to update information in tokens

Figure: EdgeViT�
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EdgeViTs (2022) – LGL

Figure: EdgeViT�
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Mobile Transformer Summary

MobileViT (2022)� – +3% accurate than MobileNet v3 (2019),
+6% accurate than DeIT (2021)

� Convolution, Attention �� MobileViT Block
EdgeViTs (2022)� – +12% accurate than MobileViT (2022)

Local-Global-Local (LGL) information exchange bottleneck
Aggregate information from neighbor tokens with DWConv
Sparse delegate tokens for long-range information exchange
Transposed convolutions to update information in tokens
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Thank you!
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