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Problem Definition

What objects are where?

Figure: Object Detection Example. (source)�
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Importance of Object Detection

Figure: Object Detection In Real World. (source)�

Andrii Polukhin | Data Science UA | June 14, 2023 6 / 64

https://futuristech.com.au/services/computer-vision/object-detection/


Object Detection Evolution | Start with the Basics | Applications | Surveillance Systems

Surveillance Systems

Figure: Object Detection In Surveillance Systems. (source)�
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Autonomous Vehicles

Figure: Object Detection In Real World. (source)�

Andrii Polukhin | Data Science UA | June 14, 2023 8 / 64

https://futuristech.com.au/services/computer-vision/object-detection/


Object Detection Evolution | Start with the Basics | Applications | Medical Imaging

Medical Imaging

Figure: Object Detection In Medical Imaging. (source)�
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Retail (Automated Checkout)

Figure: Object Detection In Retail. (source)�

Andrii Polukhin | Data Science UA | June 14, 2023 10 / 64

https://blog.roboflow.com/retail-store-item-detection-using-yolov5/
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Agriculture (Crop Monitoring)

Figure: Object Detection In Agriculture. (source)�
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Road Map (general)

Figure: (source)�
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https://link.springer.com/article/10.1007/s11263-019-01247-4


Object Detection Evolution | A Road Maps of Object Detection | Road Map (more traditional methods)

Road Map (more traditional methods)

Figure: (source)�
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https://arxiv.org/abs/1905.05055
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Road Map (deep learning methods)

Figure: (source)�
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Object Detection Metrics Improvements

Figure: Accuracy improvement of object detection on VOC07, VOC12 and
MS-COCO datasets. (source)�
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Traditional Detection Methods

Figure: Face Detection Methods in 2001. (source)�
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Viola-Jones Detectors (2001)

Figure: Viola-Jones algorithm parts: (�) combination of regions, (b) Haar
Features, (c) cascade classifier, (d) Haar feature applies to the image, and (e)
LBP feature. (source)�
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https://www.researchgate.net/figure/Viola-Jones-algorithm-parts-a-combination-of-regions-b-Haar-Features-c-cascade_fig1_282972331
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HOG Detector (2005)

Figure: Object detection algorithm using HOG features. (source)�
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https://www.researchgate.net/figure/Object-detection-algorithm-using-HOG-features_fig19_305510342
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Part-based Approaches
Deformable Part-based Model (2008)
Implicit Shape Model (2008)

Figure: (source)�
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https://arxiv.org/abs/1704.05519
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Deep Learning-based Detection Methods

Figure: The components of an ordinary object detection model. (source)�
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https://ieeexplore.ieee.org/document/10098596
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Two- and One- Stage Detectors

Figure: Deep learning object detection meta-architectures. (source)�
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RCNN (2014)

Figure: Illustration of the internal architecture of RCNN. (source)�
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https://arxiv.org/abs/2104.11892
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Fast RCNN (2015)

Figure: Illustration of the internal architecture of Fast RCNN. (source)�
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https://arxiv.org/abs/2104.11892


Object Detection Evolution | Deep Learning-based Detection Methods | Two-Stage Detectors | Faster RCNN (2015)

Faster RCNN (2015)

Figure: Illustration of the internal architecture of Faster RCNN. (source)�
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FPN (2017)

Figure: Illustration of the internal architecture of Feature Pyramid Networks
(FPN). (source)�
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Backbones

Figure: A comparison of detection accuracy of three detectors: Faster RCNN,
R-FCN and SSD on MS-COCO dataset with different detection backbones.
(source)�
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YOLO (2015)

Figure: Illustration of the internal architecture of You Only Look Once (YOLO).
(source)�
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SSD (2015)

Figure: Illustration of the internal architecture of Single Shot MultiBox Detector
(SSD). (source)�
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RetinaNet (2017)

Figure: Illustration of the internal architecture of RetinaNet. (source)�
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CenterNet (2019)

Figure: Illustration of the internal architecture of CenterNet. (source)�
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Object Detectors by Category

Figure: The number of state-of-the-art object detectors, by category, published in
top journals and evaluated on MS-COCO. (source)�
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Transformer-based Detectors

Figure: Model overview. We split an image into fixed-size patches, linearly embed
each of them, add position embeddings, and feed the resulting sequence of
vectors to a standard Transformer encoder. In order to perform classification, we
use the standard approach of adding an extra learnable “classification token” to
the sequence. (source)�
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DETR (2020)

Figure: DETR directly predicts (in parallel) the final set of detections by
combining a common CNN with a transformer architecture. During training,
bipartite matching uniquely assigns predictions with ground truth boxes.
Prediction with no match should yield a “no object” class prediction. (source)�
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https://towardsdatascience.com/detr-end-to-end-object-detection-with-transformers-and-implementation-of-python-8f195015c94d
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Swin (2021)

Figure: The proposed Swin Transformer builds hierarchical feature maps by
merging image patches (shown in gray) in deeper layers and has linear
computation complexity to input image size due to computation of self-attention
only within each local window (shown in red). (source)�
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Object Detection Evolution | Deep Learning-based Detection Methods | Non-Max Suppression (NMS)

Non-Max Suppression (NMS)

Andrii Polukhin | Data Science UA | June 14, 2023 41 / 64



Object Detection Evolution | Deep Learning-based Detection Methods | Non-Max Suppression (NMS)

Non-Max Suppression (NMS)

Figure: Evolution of non-max suppression (NMS) techniques in object detection
from 1994 to 2021: 1) Greedy selection, 2) Bounding box aggregation, 3)
Learning to NMS, and 4) NMS-free detection. (source)�
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(Zero | One | Few) - Shot Object
Detection
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Multimodality

Figure: Workflow of a typical multimodal. Three unimodal neural networks
encode the different input modalities independently. After feature extraction,
fusion modules combine the different modalities (optionally in pairs), and finally,
the fused features are inserted into a classification network. (source)�
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(Zero | One | Few) - Shot Object Detection

Figure: (source)�
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CLIP (2021)

CLIP adds image-text connection to understand the content of the
image.
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CLIP (2021)

Figure: CLIP by OpenAI. (source)�
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OWL-ViT (2022)

OWL-ViT adds image-level patches to understand the location of the
objects.
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OWL-ViT (2022)

Figure: OWL-ViT: Image-level contrastive pre-training. (source)�
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OWL-ViT (2022)

Figure: OWL-ViT: Transfer to open-vocabulary detection. (source)�
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OWL-ViT (2022)

Figure: OWL-ViT: Example of one-shot image-conditioned detection. (source)�
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GLIP (2022)

GLIP adds word-level understanding to find the objects by the
semantics of the prompt.
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GLIP (2022)

Figure: GLIP zero-shot transfers to various detection tasks, by writing the
categories of interest into a text prompt.
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GLIP (2022)

Figure: We reformulate detection as a grounding task by aligning each region/box
to phrases in a text prompt. We add the cross-modality deep fusion to early fuse
information from two modalities and to learn a language-aware visual
representation. (source)�
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GLIP (2022)

Figure: A manual prompt tuning example from the Aquarium dataset in ODinW.
Given an expressive prompt (“flat and round”), zero-shot GLIP can detect the
novel entity “stingray” better. (source)�
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Segment Anything (2023)

Segment Anything (SAM) adds masks to see the pixel-level location of
the objects.
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Segment Anything (2023)

Figure: (source)�

Andrii Polukhin | Data Science UA | June 14, 2023 58 / 64
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Segment Anything (2023)

Figure: (source)�
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Good Visual Tokenizers (2023)

GVT adds usage of the Large Language Model to investigate the
image with the text.
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Good Visual Tokenizers (2023)

Figure: Different tasks require visual understanding of different perspectives.
Mainstream vision-language tasks, e.g., (a) VQA and (b) Image Captioning
mainly focus on semantic understanding of the image. In this work, we also study
two fine-grained visual understanding tasks: (c) Object Counting (OC) and (d)
Multi-Class Identification (MCI). (source)�
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Good Visual Tokenizers (2023)

Figure: Framework of GVT. First distill the features of a pretrained CLIP via
smoothed L1 loss. Then, use it to encode images into a set of tokens, which are
fed into the Perceiver Resampler as soft prompts. Together with language
instructions, these prompts are fed into LLM to generate responses. Only the
Perceiver Resampler is optimized in this process. (source)�
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Good Visual Tokenizers (2023)

1 CLIP adds image-text connection to understand the content of the
image.

2 OWL-ViT adds image-level patches to understand the location of
the objects.

3 GLIP adds word-level understanding to find the objects by the
semantics of the prompt.

4 SAM adds masks to see the pixel-level location of the objects.
5 GVT adds usage of the Large Language Model to investigate the

image with the text.
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Q&A

Thank you for your attention!
I am ready to answer your questions now.
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