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Abstract. The analysis of the object detection deep learning model
YOLOv5, which was trained on High-altitude Infrared Thermal (HIT)
imaging, captured by Unmanned Aerial Vehicles (UAV) is presented.
The performance of the several architectures of the YOLOv5 model,
specifically ’n’, ’s’, ’m’, ’l’, and ’x’, that were trained with the same
hyperparameters and data is analyzed. The dependence of some char-
acteristics, like average precision, inference time, and latency time, on
different sizes of deep learning models, is investigated and compared for
infrared HIT-UAV and standard COCO datasets. The results show that
degradation of average precision with the model size is much lower for the
HIT-UAV dataset than for the COCO dataset which can be explained
that a significant amount of unnecessary information is removed from
infrared thermal pictures (“pseudo segmentation”), facilitating better
object detection. According to the findings, the significance and value of
the research consist in comparing the performance of the various models
on the datasets COCO and HIT-UAV, infrared photos are more effec-
tive at capturing the real-world characteristics needed to conduct better
object detection.

Keywords: Deep Learning · Object Detection · You Only Look Once
· YOLO · Average Precision · AP · Unmanned Aerial Vehicles ·
UAV · Infrared Thermal Imaging

1 Introduction

Unmanned aerial vehicles (UAVs) are frequently used in many different indus-
tries, such as emergency management [1], mapping [2], traffic surveying [3], and
environment monitoring [4]. Since UAVs can now load artificial intelligence (AI)
algorithms as edge computing devices [5], the utility of the aforementioned appli-
cations has increased with the development of deep learning and edge computing
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[6]. The rapid expansion of object detection applications has prompted numer-
ous broad datasets to be proposed to boost algorithm training and evaluation
[7,8,9,10].

This paper proposes the use of unmanned aerial vehicles (UAVs) equipped
with thermal infrared (IR) cameras to locate missing individuals in wilder-
ness settings. Detecting abandoned individuals using standard UAV technology,
which lacks IR capabilities, is challenging due to a variety of factors, such as ter-
rain, temperature, and obstacles. Infrared thermal imaging has been identified
as a promising method for enhancing object detection in adverse weather condi-
tions and challenging environments [11]. Moreover, the use of IR-equipped UAVs
has the potential to facilitate rescue operations in conditions such as complete
darkness, fog, and heavy rain [12,1]. However, outdated neural network models,
which can result in reduced performance, inaccurate positive and false negative
predictions, and difficulties in running the software on current and continuously
evolving hardware, are the primary limitations of previous studies.

The significance and value of our research are to provide insights into the
potential use of infrared thermal imaging on UAVs for object detection in chal-
lenging weather conditions, particularly in rescue operations. Special attention
will be paid to the investigation of the dependence of some characteristics (aver-
age precision, inference time, and latency time) on different sizes of deep learning
models, comparing infrared and standard datasets. This is especially important
for understanding the feasibility of the usage of relatively small models for Edge
Computing devices with regard to the deterioration of their performance with a
decrease of model sizes in various applications described in our previous publi-
cations [13,14,15].

2 Background and Related Work

The deep learning methodology has sped up the development of the object de-
tection field in recent years. The development of object detection apps has been
facilitated by large datasets for object detection [16,17,18]. Over time, we’ve
seen advancements in the accuracy and overall performance of object detection
systems that have allowed apps to identify and classify objects more accurately.

Many datasets of aerial perspective were presented for the AI job with the
UAV platform with the development of AI and the deployment of UAVs for many
domains such as forest fire prevention [19], traffic monitoring [3], disaster assis-
tance [20], and package delivery [21]. We can effectively employ object detection
to save more people by using infrared imaging.

2.1 Neural Network Object Detection Methods

Convolutional neural networks (CNNs) and large-scale GPU processing have
enabled deep learning to achieve remarkable success in modern computer vision
[22,23,24,25]. CNNs, which concentrate on processing spatially local input to
learn the visual representation, are now the de facto method for a variety of
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vision-related tasks. An object detection model typically consists of two parts:
a backbone that extracts features from the image, and a head that predicts
object classes and bounding boxes. The choice of backbone architecture for object
detectors often depends on the complexity of the model and the platform on
which it is intended to be run. For instance, architectures such as VGG [23] or
ResNet [24] are typically employed as the backbone for detectors that run on
GPU platforms due to their higher computational demands. On the other hand,
models such as MobileNet [25] may serve as suitable backbones for detectors
that run on CPU platforms, as they have lower computational complexity and
are thus better suited for resource-constrained settings.

There are two main architectures of the head: one-stage and two-stage op-
tions. The R-CNN series, which includes the Fast R-CNN [26], and Faster R-CNN
[27], is the most typical two-stage object detector. The most typical models for
one-stage object detectors are YOLO [28] and SSD [29].

The YOLO model [28] family architecture is one of the best object detection
algorithms known for its speed and accuracy, which can be pre-trained using
the COCO dataset [30]. YOLO applies one neural network to divide the picture
into areas and forecast probability and bounding boxes. The architecture of a
single-stage object detector like YOLO consists of three parts: backbone, neck,
and head. YOLO v5 uses CSPNet [31] as its backbone to extract important
features, PANet [32] as its neck to produce feature pyramids, and a similar head
to that of YOLO v4 [31] to carry out the final detection step.

2.2 Infrared Object Detection

Apart from neural network approaches [33], there are several traditional methods
available for identifying objects in infrared images [34,35,36,37]. These methods
primarily focus on distinguishing between three elements in infrared images: the
object, the background, and the image noise. The main objective is to suppress
the background and noise to enhance the object and identify it using various
techniques. One such algorithm [34] employs a spatial filtering-based technique
for infrared object detection, searching for various background and object gray
values. The background is then selected and suppressed to enable the identifica-
tion of the object. Another technique [35] incorporates shearlet-based histogram
thresholding and is based on a practical image denoising approach, offering sig-
nificant improvement but with a high computational cost. Traditional infrared
object identification techniques often use artificially created feature extractors
such as Haar [36] or HOG [37], which are effective but not robust to shifts in
object diversity.

2.3 UAV Infrared Thermal Datasets

The use of UAVs equipped with infrared thermal cameras can significantly en-
hance mission accuracy while reducing costs and resource requirements, partic-
ularly when dealing with large volumes of data. In this context, several existing
datasets have been developed for Infrared Thermal UAV object detection tasks.
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For instance, the HIT-UAV dataset [7] comprises 2898 infrared thermal im-
ages extracted from 43470 frames captured by a UAV in various scenes, including
information such as flight altitude, camera perspective, and daylight intensity.
The FLAME dataset [8], on the other hand, includes raw heatmap footage and
aerial movies captured by drone cameras, and is used for defining two well-known
studies: fire classification and fire segmentation. The PTB-TIR dataset [9], con-
taining 60 annotated sequences with nine attribute labels for pedestrian tracking,
is commonly used for evaluating thermal infrared pedestrian trackers. Finally,
the BIRDSAI dataset [10] is a long-wave thermal infrared dataset for Surveil-
lance with Aerial Intelligence, which contains images of people and animals at
night in Southern Africa, along with actual and fake footage to enable testing
of algorithms for the autonomous detection and tracking of people and animals.
Although not used in the present study, the availability of these datasets con-
tributes to the development and evaluation of new infrared thermal UAV object
detection methods.

2.4 Object Detection Metrics

Supervised object detection methods have recently produced outstanding re-
sults, leading to a demand for annotated datasets for their evaluation. A good
object detector should locate all ground truth objects with high recall and rec-
ognize only relevant objects with high precision, and an ideal model would have
high precision with increasing recall. Average precision (AP) summarizes the
precision-recall trade-off based on expected bounding box confidence levels. For-
mally, the equation of AP is defined as follows:

AP =

1∫
0

p(r)dr,

where p and r are precision and recall values for the same threshold correspond-
ingly.

3 Methodology

We conducted an analysis of the HIT-UAV dataset, which includes five cate-
gories of annotated objects: Person, Car, Bicycle, Other Vehicle, and DontCare.
We used the YOLOv5 object detection algorithm and split the dataset into three
sets for training, validation, and testing. Our analysis showed that the Car, Bi-
cycle, and Person categories make up the majority of the dataset. We utilized all
five categories for training but only evaluated the top three due to the shortage
of training data for the OtherVehicle and DontCare categories. We also ana-
lyzed the distribution of instances across annotated object categories per image
and found that most images contain fewer than 10 instances, with some out-
liers having more than 30 instances per image. We used all available YOLOv5
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architectures and evaluated their performance with two GPUs Tesla T4. We
also used various augmentation techniques, such as hue, saturation, and value
modifications, random translations and scaling, horizontal flipping, and mosaic
image generation, to improve the model’s robustness and prevent overfitting. We
provide more details on the analysis in this section.

3.1 Exploratory Data Analysis (EDA)

We trained and evaluated object detection algorithms on the HIT-UAV dataset.
The dataset was split into three sets: 2008 photos for training, 287 images for
validation, and 571 images for testing. In total, the training set consisted of
17,628 instances, the validation set had 2,460 instances, and the testing set
contained 4,811 instances, introducing this statistics in Table 1.

Subset Images Instances

Train 2008 17628
Validation 287 2560
Test 571 4811

Table 1: Dataset size for train, test, and validation subsets.

The HIT-UAV dataset includes five categories of annotated objects: Per-
son, Car, Bicycle, and Other Vehicle, which are frequently observed in rescue
and search operations. Additionally, there is an ”unidentifiable” category called
DontCare, which is used for objects that cannot be assigned to specific classes
by an annotator, particularly in cases where the objects appear in high-altitude
aerial photos. It can be challenging to determine whether these objects contain
something of importance, but there may be an important object present.

(a) Distribution of instances per category. (b) Distribution of images per category.

Fig. 1: Distribution of the categories across the instances and images.
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We conducted an analysis of the distribution of the five annotated object
categories across instances and images, as depicted in Figure 1a and Figure 1b,
respectively. Our analysis revealed that the Car, Bicycle, and Person categories
make up the majority of the dataset. For subsequent experiments, all five cat-
egories were used for training, but only the top three categories were used for
evaluation. This is because there is a shortage of training data for the OtherVe-
hicle and DontCare categories, which limited the model’s ability to learn them
effectively. Consequently, the model performed poorly for these categories, re-
sulting in an underestimation of the average AP metric across all categories.

We analyzed the distribution of instances across all annotated object cate-
gories per image, as shown in Figure 2. Our analysis indicates that the majority
of images contain fewer than 10 instances. However, there are some outliers with
more than 30 instances per image, which likely correspond to crowded locations
with numerous people.

Fig. 2: Distribution of the instances per image.

Also, we have visualized the annotations for the most labeled classes Car in
Figure 3a, Person in Figure 3b, and Bicycle in Figure 3c.

(a) Class ”Car”. (b) Class ”Person”. (c) Class ”Bicycle”.

Fig. 3: Example of the annotated classes ”Car”, ”Person”, and ”Bicycle”.
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3.2 Model Selection

In order to ensure reliable and reproducible training results, we utilized the stan-
dard and freely available YOLOv5 single-stage object detector in conjunction
with the open HIT-UAV dataset. YOLOv5 offers five different sizes of architec-
ture, ranging from the extra small (nano) size model denoted by ’n’, to the small
(’s’), medium (’m’), large (’l’), and extra large (’x’) models.

As shown in Figure 4, the number of parameters for each model size increases
nearly exponentially.

Fig. 4: Number of parameters (left) and log of the number of parameters (right)
of the different YOLO v5 sizes.

3.3 Experimental Workflow

The training time required for each variant varies. We conducted an analysis of
all the variants using the same dataset, augmentation hyperparameters, training
configuration, and hardware. To evaluate performance, we measured the average
precision, inference time (ms/image), latency time (ms/image), and frames per
second for each category, as well as an average across ”Person”, ”Car”, and
”Bicycle” categories.

Using the free computational resources, offered by the Kaggle Platform, we
trained and evaluated the performance of all YOLO v5 architectures with two
GPUs Tesla T4, which have 15 GB of memory, or 30 GB in total, CUDA Version
11.4. All models were trained to similar hyperparameters, which provided 300
training iterations and a batch size of 28. SGD is the optimizer, with a weight
decay of 0.0005, a learning rate of 0.01, and a momentum of 0.937. Priorities
are set at 0.05 for the box loss function, 0.5 for classification loss, and 0.1 for
objectness loss. The thresholding value for IOUs is 0.2.

The YOLOv5 model employs a range of augmentation techniques to improve
the performance of object detection. These techniques include the modification
of hue, saturation, and value channels, random translations and scaling, hori-
zontal flipping, and generating mosaic images. The hue channel is modified with
a portion of 1.5%, while the saturation and value channels are adjusted up to
70% and 40% relative to the original value, respectively. The image is randomly
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translated up to 10% of its height and width, and the image size is scaled up
to 50% of its original size. Additionally, the model applies horizontal flipping
with a 50% chance to the image. Finally, the model generates mosaic images
by combining multiple images, which is always used during training. These aug-
mentation techniques enhance the model’s robustness to different scenarios and
prevent overfitting by increasing the diversity of the training dataset.

The hyperparameter values and training setup is aggregated and introduced
in Table 2.

Parameter Value Augmentation
GPUs 2 × Tesla T4 -
Memory 30 GB -
CUDA Version 11.4 -
Optimizer SGD -

Weight decay 0.0005 -
Learning rate 0.01 -
Momentum 0.937 -

Loss function -
Box 0.05 -
Classification 0.5 -
Objectness 0.1 -

IOU threshold 0.2 -
Image modifications -

Hue 1.5% -
Saturation 70% -
Value 40% -

Random translation - Up to 10% of height and width
Image scaling - Up to 50% of original size
Horizontal flipping - 50% chance
Mosaic images - Always

Table 2: Training setup and hyperparameters for YOLOv5 models

In addition, we compare our results with YOLOv5 models trained on the
COCO 2017 dataset [38]. The models were trained for 300 epochs using A100
GPUs at an image size of 640. The training process utilized an SGD optimizer
with a learning rate of 0.01 and a weight decay of 0.00005. Our training setup
closely follows this configuration. These models are used to evaluate the perfor-
mance of real and infrared thermal imaging.

4 Results and their Discussion

Our evaluation of the HIT-UAV dataset reveals that YOLOv5 achieves an im-
pressive average precision, as demonstrated by the results presented in Table 3.
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We have compared the results of our model trained on the HIT-UAV dataset
with the one trained on the COCO dataset. YOLOv5 (x) outperforms other
variants in terms of average precision (AP), as evident from Figure 5a and Fig-
ure 5b. However, it is observed that YOLOv5 (x) has the longest inference and
latency times. YOLOv5 (n), on the other hand, exhibits the fastest inference
and latency times but performs poorly in terms of both AP and FPS. YOLOv5
(l) and YOLOv5 (m) demonstrate an optimal balance between accuracy and
speed, making them a preferable choice for practical applications. Alternatively,
YOLOv5 (s) can be used when speed is of higher priority over accuracy.

Model Dataset Person Car Bicycle FPS AP
YOLO v5 (n) HIT-UAV 49.4% 75.4% 50.8% 90 58.5%
YOLO v5 (s) HIT-UAV 50.8% 73.6% 52.5% 71 58.9%
YOLO v5 (m) HIT-UAV 51.0% 75.1% 55.4% 44 60.5%
YOLO v5 (l) HIT-UAV 50.9% 75.7% 55.4% 25 60.6%
YOLO v5 (x) HIT-UAV 50.0% 75.4% 57.0% 21 60.8%
YOLO v5 (n) COCO - - - 90 28.0%
YOLO v5 (s) COCO - - - 71 37.4%
YOLO v5 (m) COCO - - - 44 45.4%
YOLO v5 (l) COCO - - - 25 49.0%
YOLO v5 (x) COCO - - - 21 50.7%

Table 3: The evaluation for the YOLO v5.

Across all YOLOv5 size ranges, the results obtained from the HIT-UAV
dataset suggest that the Car category’s AP value is significantly higher than
those of other categories. This could be attributed to YOLOv5’s superior detec-
tion capabilities for large objects such as automobiles, as opposed to relatively
smaller objects like bicycles or persons. In highly crowded images, the ”Person”
category’s AP value is not as high as that of ”Car.” This is because the YOLOv5
algorithm encounters significant difficulties in such scenarios, where the model
starts to miss some of the smaller features. Specifically, the model struggles to
perform well in very cluttered images.

The COCO results indicate that the original YOLOv5 (n) model achieves
an AP of 28%. However, when trained on the HIT-UAV dataset, the YOLOv5
(n) model reaches an AP of 58%. This suggests that aerial image information is
more advantageous for detection tasks than natural photos. It is worth noting
that while infrared photos are more effective in capturing certain real-world
characteristics required for better object recognition, their advantage is limited
to certain classes, such as detecting persons who emit heat or vehicles with metal
signatures highlighted in infrared images. For other classes, RGB images could
be more beneficial.

The above results indicate the following observations:
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(a) Inference time (ms/image). (b) Latency time (ms/image).

Fig. 5: Comparison of the inference and latency time (ms/image) vs average
precision of YOLOv5 models trained on the HIT-UAV and COCO datasets for
different model sizes on GPU Tesla T4.

1. A significant amount of unnecessary information is removed from infrared
thermal pictures, providing a “pseudo segmentation” effect and facilitat-
ing object detection. Due to the clearly visible properties of the objects in
infrared thermal pictures, the typical detection model may achieve great
recognition performance with few images.

2. In the infrared thermal aerial photos, we can see that the model does a good
job of capturing large objects. Small objects, including persons, might easily
be mistaken for infrared sensor noise, which raises the false positive rate.

The first observation is supported by our previous results on the impact of
ground truth annotation (GT) quality on the performance of semantic image
segmentation of traffic conditions, where the mean accuracy values of semantic
image segmentation for coarse GT annotations are higher than for the fine GT
ones [39,40]. The infrared images give similar coarse representations of objects
in comparison to their actual visual appearance.

A visual comparison of the bounding box predictions for the trained models
is also provided in Figure 7.

The research shows that YOLOv5 performs better on the HIT-UAV dataset
than on COCO, indicating the advantages of using IR aerial imagery over RGB
imagery for object detection tasks for certain classes. However, it should be
noted that HIT-UAV has a much smaller number of images and classes than
COCO, making it an easier benchmark. Additionally, the HIT-UAV dataset only
includes a limited number of classes, which may have influenced the reported
performance difference between the two datasets. Also, the comparison between
the two datasets is not entirely fair due to differences in IoU thresholds and
image perspective. Therefore, it is suggested that in the future, the HIT-UAV
dataset should be expanded with a larger number of classes to better represent
real-world scenarios.
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(a) Inference time (ms/image). (b) Speed (FPS).

Fig. 6: Comparison of the inference time (ms/image) and speed (FPS) vs average
precision on different object categories of different model sizes on GPU Tesla T4
for HIT-UAV.

5 Conclusion

This paper presents an analysis of object detection training using the YOLOv5
architecture with an infrared thermal UAV dataset. The dataset comprises five
categories of objects with varying sizes, locations, and numbers per image. In
this study, YOLOv5 models of sizes (n), (s), (m), (l), and (x) were trained
and tested using the HIT-UAV dataset. Our findings reveal that the HIT-UAV
dataset shows a lower degradation of average precision with model size com-
pared to the COCO dataset. This can be attributed to the removal of extraneous
information from infrared thermal images, resulting in better object detection
performance for certain classes, such as persons who emit heat or vehicles with
metal signatures highlighted in infrared images. These findings have significant
implications for using small deep learning models on Edge Computing devices
for rescue operations that utilize HIT-UAV-like imagery, as their performance
deterioration decreases with a decrease in model size. Moreover, our study shows
that infrared thermal images significantly enhance object detection capabilities
by filtering out unnecessary information and improving the recognition of certain
classes compared to visual light images. However, for other classes, RGB images
may be more effective. These benefits increase the feasibility of autonomous
object detection using UAVs in crucial nighttime activities, such as city surveil-
lance, traffic control, and person search and rescue. Further research is necessary
to validate these results and expand the dataset with more images and categories
to better represent real-world scenarios and facilitate a fair comparison of the
model performance with HIT-UAV and COCO 2017 datasets. Overall, this algo-
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Fig. 7: Sample results of the YOLO v5. Left is the original annotations, the
middle is the smallest YOLO v5 (n), and the right is the largest YOLO v5 (x).
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rithm’s evaluation can contribute to the development of efficient object detection
techniques for nighttime applications.
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