Figure 4: Sample predictions of the YOLO v5 (x).

Edge Intelligence
Resource
Consumption by
UAV-based IR Object
Detection

Andrii Polukhin, Yuri
Gordienko, Mairo Leier, Gert
Jervan, Oleksandr Rokovyi,
Oleg Alienin, Sergii Stirenko

1715

Introduction

e Al and ML increasing in value due to applications
e Object detection is a key but challenging task
e CNNs like YOLO show great accuracy and speed

e But deploying CNNs on low-power devices is difficult
Our research aims to:

e Measure YOLO's performance on low-power platforms

e Provide understanding of using YOLO for UAV IR object detection

e Help build CV software for low-power devices

2/15

Related Works

Infrared Object Detection from UAVs

e IR images useful for UAV object detection
e But low contrast remains a challenge
e Most methods focus on high-end systems

e Overlooking low-power devices essential for UAVs

3/15

Low-Power Devices Computing Resources

e Low-power devices like RPi and OPi used more in IoT, embedded systems,
UAVs

e But research on usage and effectiveness lacking

e Consumption and performance crucial to evaluate effectiveness

YOLO for Low-Power Devices

e YOLO great for UAV object detection
e But potential on low-power devices unexplored

e Should explore YOLO for UAV IR object detection using low-power devices

4/15

Materials and Methods

e Measure YOLO v5 on RPi and OPi for;:
o Inference Time (s)

o Peak Power Consumption (W)

o Memory Consumption (MB)

o Inference Energy (J)

o Storage Consumption (MB)
e Evaluate efficiency and effectiveness
e Train on HIT-UAV dataset
e 2008 train / 287 val / 571 test images

5/15

Experimental Design

e Time: 10 runs, account for variations
e Power: Wattmeter on power supply
e Memory: Python memory-profiler

e Energy: Power * Time

e Storage: Weights file size
The approach to understand:

e Performance of YOLO v5 models on RPi and OPi

e Model, device, configuration selection guidelines

6/15

Power Supply
5V

DC Digital

ML Frameworks

e PyTorch
e ONNX
e TensorFlow Lite

Wattmeter

v

Devices
e Raspberry Pi 4

Models

YOLO v5 (n)
YOLO v5 (s)
YOLO v5 (m)
YOLO v5 (1)
YOLO v5 (x)

e Orange Pi One

Peak Power
Consumption
Measurement

Data Type
e Float32

e Floatl6
e Int8

Inference Memory

Figure 3: Resource Consumption Measurement Process Visualization.

memory- Python C .
profiler Script M‘:;Z?::el:;g:;
| Input Image
|
(640, 640, 3)
L — — — ' Inference Time
Python Consumption
Script Measurement
Storage
Consumption
Measurement

7715

Results

e RPi clear advantage over OPi in inference time and memory
e As model size increases, inference time and power increase
e But YOLO v5 (s) the same power as (n) -> viable for higher accuracy

e Framework affects time and power significantly
o ONNX most memory efficient

o TF Lite most energy efficient for smaller models
o PyTorch consistent balancing of memory and power
e Larger models under TF Lite high demands

e OPi higher variance in inference energy than RPi

8/15

£

Inference Energy (

Framework = PyTorch Framework = ONNX Framework = TensorFlow Lite

, A
| . Device

® Raspberry Pi
Orange Pi
.\lUdL‘I&
YOLO vh (x)
YOLO v5 (1)
YOLO v5 (m)
YOLO vh (s)
YOLO v5 (n)

100 - s - s -

300

200 - | -® 1 B P

100 .

[| i ®
T T L [
® ° ! . ® o . . ®
0 L - L g L] ® g L]
YOLO vi (x) YOLO v (1) YOLO vH (m) YOLO vi (s) YOLO v3 (n) YOLO vi (x) YOLO v5 (1) YOLO v5 (m) YOLO v3 (s YOLO v5 (n) YOLO v5 (x) YOLO %5 (1) YOLO v5 (m) YOLO vi (s) YOLO v5 (n)

Figure 1: Comparison of Inference Energy (J) vs different model sizes using fp32 data type on Orange Pi and Raspberry Pi.

9/15

Memory consumption optimization crucial
ONNX and lower precision more efficient

Performance depends on:
o Use case

o Hardware
o Software optimization

Future work:
o Optimize factors above for applications

o Explore tradeoffs and optimizations

10/15

Framework = PyTorch

/

} || -
31-. _:_
x
X

oo © 55:))’

20- @ - -
| . .

Inference Peak Power Consumption (W)

Inference (s)

0 a0 100 150 200 250 300 0 50

100

Framework = ONNX

150 200
Inference (s)

Framework = TensorFlow Lite

Inference (s)

0 50 100 150 200 250

300

Device
Raspbarry i
Orange Pi
Models

Figure 2: Comparison of Inference Peak Power Consumption (W) vs different Machine Learning Frameworks on Orange Pi and

Raspberry Pi.

11715

Table 1: Inference Time (s) of YOLO v5 model sizes with float32
data type and different ML frameworks and devices.

YOLO v5 Model
Framework (n) (s) (m) 1)) (x)

PyTorch 6.8 13.0 29.0 55.6 123.2

Orange Pi ONNX 34 11.0 30.8 79.1 168.1
TF Lite 40 13.1 768 177.0 327.7

PyTorch 1.9 3.8 7.9 16.8 27.9

Raspberry Pi ONNX 0.7 1.8 4.8 10.2 18.7
TF Lite 0.7 2.2 6.2 13.6 25.6

Table 2: Storage and Memory Consumption (MB) of YOLO v5
model sizes with float32 data type and different ML frameworks.

YOLO v5 Model

Framework (n) (s) (m) 1)) (x)
Storace PyTorch 72 269 804 177.0 330.0
Comumgtion ONNX 7.1 272 80.1 176.0 329.0
surip TF Lite 6.8 269 798 176.0 329.0
Initialization PyTorch 10.8 309 843 181.5 335.0
Memory ONNX 27.2 819 205.7 431.0 711.1
Consumption TF Lite 17.1 57.1 1632 3655 664.5
Inference PyTorch 353 729 912 101.3 116.1
Memory ONNX 253 470 583 875 938
Consumption TF Lite 759 1064 140.2 1832 209.1

12 /15

Conclusion

e YOLO feasible for UAV IR object detection on low-power Edge devices
e RPi more energy efficient than OPi

e Framework impacts power and performance significantly

e Smaller models and lower precision more efficient

e Optimization possible through configurations

e Memory and storage management essential

13715

Thank You

This research was in part sponsored by the NATO Science for Peace and Security
Programme under grant id. G6032.

14/15

Questions

15715

