

Figure 4: Sample predictions of the YOLO v5 (x).

Edge Intelligence Resource Consumption by UAV-based IR Object Detection

Andrii Polukhin, Yuri Gordienko, Mairo Leier, Gert Jervan, Oleksandr Rokovyi, Oleg Alienin, Sergii Stirenko

Introduction

- AI and ML increasing in value due to applications
- Object detection is a key but challenging task
- CNNs like YOLO show great accuracy and speed
- But deploying CNNs on low-power devices is difficult

Our research aims to:

- Measure YOLO's performance on low-power platforms
- Provide understanding of using YOLO for UAV IR object detection
- Help build CV software for low-power devices

Related Works

Infrared Object Detection from UAVs

- IR images useful for UAV object detection
- But low contrast remains a challenge
- Most methods focus on high-end systems
- Overlooking low-power devices essential for UAVs

Low-Power Devices Computing Resources

- Low-power devices like RPi and OPi used more in IoT, embedded systems, UAVs
- But research on usage and effectiveness lacking
- Consumption and performance crucial to evaluate effectiveness

YOLO for Low-Power Devices

- YOLO great for UAV object detection
- But potential on low-power devices unexplored
- Should explore YOLO for UAV IR object detection using low-power devices

Materials and Methods

- Measure YOLO v5 on RPi and OPi for:
 - Inference Time (s)
 - Peak Power Consumption (W)
 - Memory Consumption (MB)
 - Inference Energy (J)
 - Storage Consumption (MB)
- Evaluate efficiency and effectiveness
- Train on HIT-UAV dataset
- 2008 train / 287 val / 571 test images

Experimental Design

- Time: 10 runs, account for variations
- Power: Wattmeter on power supply
- Memory: Python memory-profiler
- Energy: Power * Time
- Storage: Weights file size

The approach to understand:

- Performance of YOLO v5 models on RPi and OPi
- Model, device, configuration selection guidelines

Figure 3: Resource Consumption Measurement Process Visualization.

Results

- RPi clear advantage over OPi in inference time and memory
- As model size increases, inference time and power increase
- But YOLO v5 (s) the same power as (n) -> viable for higher accuracy
- Framework affects time and power significantly
 - ONNX most memory efficient
 - TF Lite most energy efficient for smaller models
 - PyTorch consistent balancing of memory and power
- Larger models under TF Lite high demands
- OPi higher variance in inference energy than RPi

Figure 1: Comparison of Inference Energy (J) vs different model sizes using fp32 data type on Orange Pi and Raspberry Pi.

- Memory consumption optimization crucial
- ONNX and lower precision more efficient
- Performance depends on:
 - Use case
 - Hardware
 - Software optimization
- Future work:
 - Optimize factors above for applications
 - Explore tradeoffs and optimizations

Figure 2: Comparison of Inference Peak Power Consumption (W) vs different Machine Learning Frameworks on Orange Pi and Raspberry Pi.

Table 1: Inference Time (s) of YOLO v5 model sizes with float32data type and different ML frameworks and devices.

		YOLO v5 Model						
	Framework	(n)	(s)	(m)	(l)	(x)		
Orange Pi	PyTorch	6.8	13.0	29.0	55.6	123.2		
	ONNX	3.4	11.0	30.8	79.1	168.1		
	TF Lite	4.0	13.1	76.8	177.0	327.7		
Raspberry Pi	PyTorch	1.9	3.8	7.9	16.8	27.9		
	ONNX	0.7	1.8	4.8	10.2	18.7		
	TF Lite	0.7	2.2	6.2	13.6	25.6		

Table 2: Storage and Memory Consumption (MB) of YOLO v5model sizes with float32 data type and different ML frameworks.

		YOLO v5 Model					
	Framework	(n)	(s)	(m)	(l)	(x)	
Storage Consumption	PyTorch ONNX TF Lite	7.2 7.1 6.8	26.9 27.2 26.9	80.4 80.1 79.8	177.0 176.0 176.0	330.0 329.0 329.0	
Initialization Memory Consumption	PyTorch ONNX TF Lite	10.8 27.2 17.1	30.9 81.9 57.1	84.3 205.7 163.2	181.5 431.0 365.5	335.0 711.1 664.5	
Inference Memory Consumption	PyTorch ONNX TF Lite	35.3 25.3 75.9	72.9 47.0 106.4	91.2 58.3 140.2	101.3 87.5 183.2	116.1 93.8 209.1	

Conclusion

- YOLO feasible for UAV IR object detection on low-power Edge devices
- RPi more energy efficient than OPi
- Framework impacts power and performance significantly
- Smaller models and lower precision more efficient
- Optimization possible through configurations
- Memory and storage management essential

Thank You

This research was in part sponsored by the NATO Science for Peace and Security Programme under grant id. G6032.

Questions